الصفحات

السبت، 3 مارس 2012

Square Root of Matrix A

An n × n matrix A is diagonalizable if there is a matrix V and a diagonal matrix D such that A = VDV − 1. This happens if and only if A has n eigenvectors which constitute a basis for Cn. In this case, V can be chosen to be the matrix with the n eigenvectors as columns, and a square root of A is
 R = V S V^{-1}, \,
where S is any square root of D. Indeed,
(V D^{1/2} V^{-1})^2 = V D^{1/2} (V^{-1} V) D^{1/2} V^{-1} = V D V^{-1} = A\,
For example, the matrix A = \bigl(\begin{smallmatrix}\\ 33&24\\ 48&57\end{smallmatrix} \bigr) can be diagonalized as VDV − 1, where V = \bigl( \begin{smallmatrix}\\ 1&~\;1\\ 2&-1\end{smallmatrix} \bigr) and D = \bigl( \begin{smallmatrix}\\ 81&0\\ ~\;0&9\end{smallmatrix} \bigr).
D has principal square root D^{1/2} = \bigl( \begin{smallmatrix}\\ 9&0\\ 0&3\end{smallmatrix} \bigr), giving the square root A^{1/2} = V D^{1/2} V^{-1} = \bigl( \begin{smallmatrix}\\ 5&2\\ 4&7\end{smallmatrix} \bigr)

ليست هناك تعليقات:

إرسال تعليق